Poisson Homology in Degree 0 for some Rings of Symplectic Invariants

نویسنده

  • Frédéric Butin
چکیده

Let $\go{g}$ be a finite-dimensional semi-simple Lie algebra, $\go{h}$ a Cartan subalgebra of $\go{g}$, and $W$ its Weyl group. The group $W$ acts diagonally on $V:=\go{h}\oplus\go{h}^*$, as well as on $\mathbb{C}[V]$. The purpose of this article is to study the Poisson homology of the algebra of invariants $\mathbb{C}[V]^W$ endowed with the standard symplectic bracket. To begin with, we give general results about the Poisson homology space in degree 0, denoted by $HP_0(\mathbb{C}[V]^W)$, in the case where $\go{g}$ is of type $B_n-C_n$ or $D_n$, results which support Alev's conjecture. Then we are focusing the interest on the particular cases of ranks 2 and 3, by computing the Poisson homology space in degree 0 in the cases where $\go{g}$ is of type $B_2$ ($\go{so}_5$), $D_2$ ($\go{so}_4$), then $B_3$ ($\go{so}_7$), and $D_3=A_3$ ($\go{so}_6\simeq\go{sl}_4$). In order to do this, we make use of a functional equation introduced by Y. Berest, P. Etingof and V. Ginzburg. We recover, by a different method, the result established by J. Alev and L. Foissy, according to which the dimension of $HP_0(\mathbb{C}[V]^W)$ equals 2 for $B_2$. Then we calculate the dimension of this space and we show that it is equal to 1 for $D_2$. We also calculate it for the rank 3 cases, we show that it is equal to 3 for $B_3-C_3$ and 1 for $D_3=A_3$.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypertoric Poisson homology in degree zero

Etingof and Schedler formulated a conjecture about the degree zero Poisson homology of an affine cone that admits a projective symplectic resolution. We strengthen this conjecture in general and prove the strengthened version for hypertoric varieties. We also formulate an analogous conjecture for the degree zero Hochschild homology of a quantization of such a variety.

متن کامل

Poisson-de Rham homology of hypertoric varieties and nilpotent cones

We prove a conjecture of Etingof and the second author for hypertoric varieties, that the Poisson-de Rham homology of a unimodular hypertoric cone is isomorphic to the de Rham cohomology of its hypertoric resolution. More generally, we prove that this conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and only if it holds in degree zero for all normal slices ...

متن کامل

Classification of multiplicity free symplectic representations

Let G be a connected reductive group acting on a finite dimensional vector space V . Assume that V is equipped with a G-invariant symplectic form. Then the ring O(V ) of polynomial functions becomes a Poisson algebra. The ring O(V ) of invariants is a sub-Poisson algebra. We call V multiplicity free if O(V ) is Poisson commutative, i.e., if {f, g} = 0 for all invariants f and g. Alternatively, ...

متن کامل

Counting Curves in Elliptic Surfaces by Symplectic Methods

We explicitly compute family GW invariants of elliptic surfaces for primitive classes. That involves establishing a TRR formula and a symplectic sum formula for elliptic surfaces and then determining the GW invariants using an argument from [IP3]. In particular, as in [BL1], these calculations also confirm the well-known Yau-Zaslow Conjecture [YZ] for primitive classes in K3 surfaces. In [L] we...

متن کامل

0 The Symplectic Sum Formula for Gromov - Witten Invariants

In the symplectic category there is a ‘connect sum’ operation that glues symplectic manifolds by identifying neighborhoods of embedded codimension two submanifolds. This paper establishes a formula for the Gromov-Witten invariants of a symplectic sum Z = X#Y in terms of the relative GW invariants ofX and Y . Several applications to enumerative geometry are given. Gromov-Witten invariants are co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0809.4983  شماره 

صفحات  -

تاریخ انتشار 2008